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Phonon Spectra in One-Dimensional Quasicrystals 
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The propagation of phonons in one-dimensional quasicrystals is investigated. 
We use the projection method which has been recently proposed to generate 
almost periodic tilings of the line. We define a natural Laplace operator on these 
structures, which models phonon (and also tight-binding electron) propagation. 
The selfsimilarity properties of the spectrum are discussed, as well as some 
characteristic features of the eigenstates, which are neither extended nor 
localized. The long-wavelength limit is examined in more detail; it is argued that 
one is the lower critical dimension for this type of models. 

KEY WORDS:  Quasicrystats; quasiperiodic structures; Cantor spectrum; 
density of states; critical wave functions. 

1. I N T R O D U C T I O N  

The experimental discovery by Shechtman e t  al. ~)  of a metallic solid phase 
of A1-Mn alloy with icosahedral symmetry has considerably revived 
interest in quasicrystals, since this point symmetry is inconsistent with con- 
ventional lattice translations. It was known from Penrose's work ~2~ that the 
plane can be tiled in a nonperiodic way by two types of rhombs. The 
crystallographic properties of these structures, and of generalizations of 
them in three dimensions, have been studied by several authors. (34) 

More recently, different groups ~5 8) have described an elegant and 
general way of generating a wide class of almost periodic tilings of 
euclidean p-dimensional space by projection from higher-dimensional 
regular lattices, either in direct (position) space or in reciprocal (momen- 
tum) space. Some of these structures have diffraction patterns which look 
identical to the experimental ones of A1-Mn alloys. The motivation in 
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studying physical properties of these quasicrystals is therefore twofold: they 
are realized in nature and possess an interesting mathematical structure. 

The aim of this paper is to study the Laplace operator, which 
describes the propagation of harmonic vibrations (phonons) and of elec- 
trons (in the tight-binding approximation) on these structures. We shall 
restrict ourselves to the one-dimensional case, which already exhibits 
interesting features, in spite of its apparent simplicity. Our plan is the 
following: in Section 2, we describe some useful properties of the almost 
periodic chain obtained by the projection method from a square lattice; we 
define a one-parameter family of realistic Laplace operators and we discuss 
their possible applications. Section 3 is devoted to the spectrum of our 
model, with emphasis on its scaling properties and on the continuum (long 
wavelength) limit; we use in particular the renormalization group methods 
which have been applied to the similar problem of a discrete Schr6dinger 
equation in a quasiperiodic potential. In Section 4, we discuss some par- 
ticular features of the eigenfunctions; they are neither extended nor 
localized in the conventional sense. Some concluding remarks are presented 
in Section 5. 

2. T H E  M O D E L  

The construction of a "one-dimensional quasicrystal," or almost 
periodic tiling of the line, by the projection method is explicitly given in 
Refs. 6 and 8. We reproduce it briefly. Consider in the Euclidean plane ~2 
the strip swept by shifting the unit square ( - 1 < x ~< 0; - 1 < y ~< 0) along 
the straight line D ( y  = tx),  where t =  tan 0 and 0 is the angle between D 
and the x axis. By projecting orthogonally onto D all points of the strip 
having integer coordinates, we get a sequence of points on D (see Fig. 1) 
which build the announced quasicrystal. A particularity of one-dimensional 
nonperiodic lattices is that they can always be viewed as a continuous 
deformation of the regular lattice Z, since a sequence of points of the line 
has a natural ordering. Such an average regular lattice generally does not 
exist in dimension p > 1. 

Let u= denote the abscissa along D of the point number n, assuming 
that the label n = 0 is attached to the origin. The length l= = u,, + 1 - u =  of 
the bond joining points n and n + 1 can only take the two values s = sin 0 
or c = c o s 0 ,  corresponding, respectively, to projections of vertical or 
horizontal segments of the original lattice 2 2 . Let us associate with the 
right half of our chain an infinite word w = scscc .... where each letter stands 
for the length lo, 11,12,... of the successive bonds. Whenever the slope 
t = tan 0 = p/q  is a rational number, the tiling and the corresponding word 
w are periodic, with period p + q. When t is irrational, the tiling is a 
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Fig. 1. Construct ion of a one-dimensional  quasicrystal by the projection method. 

quasicrystaL In more rigorous terms the sequence of bond lengths l, is 
almost periodic. 

Assume from now on that t is irrational and satisfies 0 < t < 1. It is 
easy to realize that the letters s and c appear with frequencies t/(t + 1) and 
1/(t + 1) respectively in w, and hence that the average lattice spacing/reads  

t 1 1 
[=  s c = (2.1) 

t + l  + t - - ~  s + c  

A useful way of describing this type of quasiperiodic structure in one 
dimension is to introduce a so-called "hull function" g such that the 
abscissa of the nth point is given by 

u, = n[+ g(n) (2.2) 

One can easily deduce from the geometrical construction of Fig. 1 that the 
function g reads 

where F(y)  denotes the fractional part of y, i.e., the difference between y 
and its integer part [y ] .  

Let us now give a complementary description of the word w, related to 
the continued fraction expansion of the slope t: 

1 
t -  1 - [ r l ,  r 2 , . . . ]  (2.4) 

rl q - - - -  
r 2 q- . . .  
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where r lr  2 . . . .  are integers. By truncating this fraction at rank L, we obtain 
a rational number: 

PL 1 
tL - - (2.5) 

qL 1 
r l q -  

r 2 +  . . .  _l - 1 

rL 

called the Lth principal convergent of t. These numbers converge to t in 
such a way t ha t  

1 1 
- - <  [t--tEl < - -  (2.6) 
2qLqL+t qLqL+l 

The, integers PL and qc obey the same recurrence relation: 

PL = rL PL - 1 + PC 2 

q L = r L q L - - l  + q L  2 
(2.7) 

We have seen that the word wL associated with the rational slope tc is 
periodic; let WL denote its unit cell: wL= W c W c W c . . . ;  WL contains 
(PL + qL) letters. Let us show that WL also obeys a three-terms recurrence 
relation, very reminiscent of (2.7), namely, 

m t  = WrL L 1 W E  - 2 ( L  even) 
(2.8) 

WE = WE 2 Wrc L- l (L  odd) 

where multiplication is to be understood as word concatenation. The initial 
values of the recursion are: W0=c  (since t 0 = 0  ) and W 1 = s c  ra (since 
tl = 1/rl). It is easy to check that Eq. (2.8) indeed gives the correct number 
of letters s and c in the cell WE. We shall prove that the ordering imposed 
by (2.8) is the right one. 

To do so, consider the geometrical construction of the cell WL 
corresponding to the rational slope t L. Starting from the origin, we move 
to the nearest neighbor of Z 2 lying in the strip: t z x  <~ y < t z x  + tL + 1, and 
repeat the procedure according to 

f ( u ; v +  1) if l ~ / ( v + l ) > ~ t c ( l e t t e r c )  (2.9) 
(/x; v)--' ( (#  + 1; v) if # / ( v + l ) < t c ( l e t t e r s )  

since letters c and s denote horizontal and vertical motions, respectively. 
The procedure is ended if (/~; v) lies on the line D; this happens first for 
(#; v )=  (qL, PC)" The crucial point in the derivation of (2.8) lies in the 
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fact that  tL converge al ternatively to t: the even subsequence is strictly 
increasing and the odd one strictly decreasing: 

t2t 2 • t 2 l <  "'" < t <  "'" < t21+~<t2 t  l (2.10) 

Assume from now on that  L = 2l is even (the case of odd L is t reated in an 
analogous  way). Let  # < Pal and v < q2z be the coordinates  of a point  of the 
strip, such that  its next horizontal  ne ighbor  lies outside the strip, i.e., 
#/(v  + 1) <~ tzt < I~/v. Using the fact that  to ..... t2r 2, t2/_ 1 are also principal  
convergents  of t2t, we show that  

I~/(v+ 1)~<t2/</2~ l <~l.t/v (2.11) 

Therefore vertical moves  concide for these points for slopes t2~ and t2t 1. 
Next,  we show that  (2.8) gives the only possible ordering. This is readily 
done by using the following inequality: 

r21q2 t a tz t<rzlP21 l<~r2/q2~ l t z t+ /2 /+ l  (2.12) 

which is itself a simple consequence of classical inequalities on the principal 
convergents.  

Let us now define a Laplace opera to r  A acting on scalar quanti t ies ~0. 
according to 

(Z~ (p)n - ( p n §  (Pn-- (70n 1 (2.13) 

where the 2,, are couplings a t tached to the lattice bonds.  We assume that  2n 
only depends on the length ln, i.e., 2,, has two possible values, say, ~n = 2, 
for short  bonds  (l n = s), and 2 n = 2 C for long bonds  (ln = r It  is reasonable  
to choose ,;~s<2c, implying that  neighboring sites are more  strongly 
coupled if the distance between them is smaller. In the following, we choose 
units such that  2c. = 1, and keep 2s = p < 1 as a free parameter .  It  has been 
pointed out (9) that  there is a special choice of the couplings 2,,, namely,  2~ 
propor t iona l  to the lengths l~, such that  A acting on linear functions 
~o~ = A + Bu~ of the coordinate  u gives identically zero, just as the differen- 
tial opera to r  d2/du 2. In the present  model,  this special Laplacian 
corresponds  to the value p = t. We shall see hereafter that  this value is not 
singled out in the physical  propert ies  of our  model ,  and that  the essential 
features of the opera to r  A are quali tat ively independent  of the value of p. 

The eigenfunctions ~o and associated eigenvalues z > 0 of the opera to r  
( - A ) satisfy 

(tgn+l--(Pn ~On--q)n 1 /- zcp~ = 0 (2.14) 

822/42/3-4-4 
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This equation appears in a natural way in several physical problems. The 
study of harmonic vibrations of the quasicrystal (phonon spectrum) leads 
to an equation of the form (2.14), where q~n is the displacement of the nth 
atom, 2 n the elastic coupling (inverse spring constant) between atoms n 
and n + 1, and z denotes the squared eigenfrequency 0) 2 in reduced units. 
Note that in higher dimension the displacement of an atom is a vector, and 
hence the eigenmode equation for phonons is more complicated than the 
scalar equation (2.14). The Schr6dinger equation for electrons in the tight- 
binding approximation also leads to equation (2.14) if the site potentials V, 
are equal to a constant V, and if 2n are the hopping matrix elements 
between neighboring sites; ~0n is now the amplitude of the wave function at 
site n, and z is proportional to ( E -  V) where E is the energy of the state. 
More generally, any kind of propagation or diffusion problems for which 
all sites are equivalent, and only the nature of the bonds matters, can be 
modelized by equations involving a discrete Laplacian of the type (2.13). 

3. P R O P E R T I E S  OF T H E  S P E C T R U M  

In order to study the spectrum of our Laplacian, it is convenient to 
introduce variables Qn which live on the bonds of the quasicrystal, and 
hence are dual to the ~p,. The two types of variables are related through 

Qn = ((])n + 1 - -  @n)/)~n (3.1a) 

q)n = (Qn 1 - Qn)/z (3.1b) 

and the eigenfunction equation (2.14) becomes in terms of the Q,,: 

Q n + I - 2 Q n + Q n  1 + z 2 , Q ~ = O  (3.2) 

Equation (3.2) expresses that Qn is an eigenfunction associated with eigen- 

value 0 for the operator H = - A o +  V, where A o is the usual discrete 
Laplacian on a regular lattice, and the potentials Vn = - z 2 n .  The transfor- 
mation q )~  Q has been introduced by Gardner et al., ~~ who study the 
operator A on a random chain. 

The rigorous study of Schr6dinger equations with almost periodic 
potentials has recently produced numerous mathematical results (see 
Ref. 11 for a review). The present problem amounts to finding the values of 
the potential strength z such that the operator H has a zero eigenvalue, 
while one is usually interested in finding the eigenvalues for a fixed poten- 
tial. Although the problems are a priori different, they have a large number 
of common features. 
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A convenient way of dealing with Eq. (3.2) is to introduce the transfer 
matrix formalism. Equation (3.2) can be recast in the following matrix 
form: 

(QQ~I)=Tn(QQ~nl)_ with T n = (  2-zRnl O 1) (3.3) 

where 2n assumes the value p or 1, according to the value of the nth letter 
in the word w. Equation (3.3) is easily iterated and yields 

This elegant version of Eq. (3.2) is of course particular to one-dimensional 
models. Another remarkable property in one dimension is the fact that the 
integrated density of states (IDS) H(z), defined as being the fraction of 
eigenvalues which are less than z, is also equal to the asymptotic number of 
times the solution Q of Eq. (3.2) changes its sign per unit length. This also 
holds for values of z which are not in the spectrum. In the case of con- 
tinuous Schr6dinger equations, where H = - d 2 / d x 2 +  V(x), the quantity 
~c(z)=H(z)/2 is the average number of times the phase of the wave 
function rotates per unit length, and is often called rotation number at 
energy z. 

The case of a rational slope t = p/q is very well understood. We have 
seen that the word w is periodic, with period p + q. The eigenfunctions of 
our Laplacian obey Bloch theorem, and the spectrum generally consists of 
(p + q) bands; in each band, the eigenfunction Q is a Bloch wave labeled 
by a wave vector k such that tr(Tp+q.. .T~)= 2 cos k. In the gap between 
bands having number m and (m + 1), the IDS has the constant value 
H(z) = m/(p + q). 

Let us return to the case of an irrational slope t. We shall treat in great 
detail the example of the inverse golden mean: t = a - l = a - 1  with 
a = (x/5 + 1 )/2, keeping in mind that the specific results we obtain for this 
special value are generalizable to values of t which have the most typical 
diophantine properties, i.e., are not too well approximated by rationals3 9) 
The inverse golden mean contains only the number 1 in its continued frac- 
tion expansion (r~ = r 2 . . .  = 1 ) ;  it is hence the number which is the worst 
approximated by rationals, and also the number for which the lack of 
periodicity of our quasicrystal is expected to have quantitatively the most 
spectacular consequences. 

The rational approximants tL of t defined in Section 2 are 
tL = FL/FL+ 1, where FL are the Fibonacci numbers, defined by F o = 0, 
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f 1 

WL of the periodic words w r  therefore satisfy 

W o = c W 1 = sc 

W L =  W L 1 W L _ 2  (L even) 

W L  ~- W L  2 W L -  1 ( L  odd) 

= 1, and the recursion relation FL = FL 1+ FL 2. The associated cells 

(3.5) 

Note that WL has length FL+2. The corresponding transfer matrices 
"rL= TFL+2 1"'" T2T1 obviously obey the same recursion relations (with 
the opposite order of factors, since matrix products are read from right to 
left). It can then be shown (12) that the quantities 

1 
xL = ~  tr zL (3.6) 

obey the following four-terms recursion relation: 

XL = 2 X L  l X L  2 -- XL--  3 (3.7) 

while a convenient way to put the initial conditions is 

x _  2 = l ,  x l = l - p z / 2 ,  x o  = l - z / 2  

The remarkable relation (3.7) has been the starting point of a renor- 
malization group treatment of almost periodic potential models involving 
the golden mean. (12 16) In the present model, it is a simple consequence of 
Eq. (3.5), which holds for arbitrary values of p and z. It will allow us to 
understand quantitatively the scaling properties of the spectrum, in analogy 
with the work of Kohmoto e t a / .  {12 14) and of Ostlund et a[. (15'161 

The IDS H(z), computed from the number of changes in the sign of Q,,  

as explained above, is plotted on Fig. 2, for p = 0.5. Its most characteristic 
point, namely, the presence of gaps at all length scales, is present for all 
values of p < 1. It is indeed a generic feature of almost periodic Laplace 
operators that their spectrum is a Cantor set. The dashed curve represents 
the IDS of the underlying average lattice [where all 2, have been replaced 
by their average )~ = ( t p  + 1 ) / ( t  + 1 )]: 

, 
Hay(z) = -  cos 1 -- (3.8) 

7C 

The difference between both curves is hardly visible for small energies 
(z < 1); we shall return to that limit at the end of the section. 
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Fig. 2. 
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6 z  
Plot of the integrated density of states H(z) of the quasicrystal with t = a ~ and 

p = 0.5 (full curve), and of the underlying average lattice (dashed curve). 

In the above-mentioned discontinuous almost periodic potential 
models, the authors of Refs. 12-14 have related scaling properties of the 
spectrum to the presence of a particular six-cycle in the trace mapping 
(3.7): a ~ 0 ~ 0--, - a  ~ 0 ~ 0, where a depends continuously on the 
potential strength. In the present case, we have realized from numerical 
data that the self-similarity properties of the spectrum were governed by 
another six-cycle of the same mapping, namely, 

~ - f l  ~ -c~ ~ fl ~ - ~  ~ -f l ,  where the positive numbers c~ and fl are 
the following functions of p and z: 

c~,fi=X++_(X2-X) j/2 with X=�89 t/2} (3.9) 

Our argument will closely follow that of Ref. 14. Let A(z) denote the 
largest eigenvalue of the mapping obtained by linearizing the trace 
mapping (3.7) around the six-cycle we have just described. Then a small 
part of the spectrum around some energy z will reproduce itself up to a 
dilation factor A(z) when the approximant tL is replaced by tL+ 6. We 
claim that this scaling behavior remains valid in the infinite system at the 
upper bound Zma x of the spectrum, and more generally at each gap edge. 
Let us take the example of the upper bound for simplicity. Let ZL denote 
the lower bound of the last band corresponding to the approximant 
tL: 1--H(zL)=I/FL+2. When L is replaced by L + 6 ,  then (Zmax--ZL) is 
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asymptotically divided by A(zma x) ,  while 1 - H(zL + 6) = 1/FL + 8 
~7-6IF L + 2" It can be argued from this analysis that H(z)  exhibits the follow- 
ing power-law behavior in the vicinity of Zmax : 

1 - H ( z ) ~  (Zma x - -  Z)  A P[ln(z - Zmax) ] (3.10) 

where the exponent A stands for A(z  . . . .  ) with 

61na  
zl(z) = (3.11) 

in A(z) 

and P is a periodic amplitude with period In A. Figure 3 shows a log log 
plot of 1 - H ( z )  against Zma x - z ,  for p =0.5. The straight line has the 
theoretical slope A =0.427174. The observed period (one period between 
gaps D and F, etc.) is actually three times smaller than the prediction 
In A = 6.758998; in other words, the scaling of H(z)  is as if the six-cycle 
were a two-cycle e--, fl, forgetting about the signs. 

In each gap, the IDS takes a (constant) value which is a linear com- 
bination, with integer coefficients, of the two incommensurate frequencies 
appearing in the couplings 2n, i.e., 1 and t/(1 + t), or equivalently 1 and a 
in our case. This property is the well-known "gap labeling theorem" (see 

ln(1-H Czll 
O. 

-5.i 
-1( 

/ G F E 

, k , , i i , ~ l , i , i , i 

). -5. O. 
Ln 

Fig. 3. Log log plot of 1 H ( z )  against Zma x z, for p = 0.5, showing the scaling behavior of 
the spectrum at its upper bound. The straight line has the theoretical slope zJ = 0.427174. 
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Ref. 9 and references therein). The letters A, B, C .... on Figs. 2 and 3 show 
a particular sequence of gaps, which contains the largest ones, where the 
labeling of the IDS involves two adjacent Fibonacci numbers: 

H k = l + ( _ l ) ~ ( a F k _ F k + l ) = l _ a  k (3.12) 

A, B, C,... correspond to k = 1, 2, 3 ..... respectively. The presence of two of 
these gaps per asymptotic period (In A)/3 in ln(Zma x --Z) is of course con- 
sistent with Eq. (311). The power-law behavior (3.11) is present around 
each gap edge z such that the associated sequence x,(z) is attracted by the 
six-cycle we have singled out. Our numerical experience leads us to conjec- 
ture that this indeed happens for all gap edges, i.e., on a set which is 
denumerable but dense in the spectrum. A very similar dense set of power- 
law singularities modulated by log-periodic amplitudes has been recently 
described <~7~ in the IDS of a random one-dimensional harmonic alloy 
model. 

We end our study of the spectrum by looking at the small-frequency 
limit (z ~ 0). We have seen in Fig. 2 that the IDS H(z) approaches the 
value Hay(z) corresponding to the underlying average (periodic) lattice 
very rapidly as z ~ 0 .  In particular, gaps are hardly visible for z<0.6 .  
Although H(z) looks very smooth in this region, we now argue that the 
spectrum has no absolutely continuous component. In other words, for 
almost all values of z, the x ,  of the trace mapping (3.7) escape at infinity. 
In order to get a numerical evidence of this claim, as well as a more quan- 
titative understanding of the long wavelength limit, we have computed the 
mean escape time T(z) of the trace mapping in the following way. Let N(z) 
be the smallest integer such that Ixn] > 10 ~~ where x,, are the iterates of the 
trace mapping. Note that N(z) is not defined at points, such as the gap 
edges, which lead to bounded orbits. Define T(z) as being the average of 
N(z') over a small interval around z:z(1 6)<z'<z(l  +6).  We observe 
from the numerical data the following facts: T(z) is a well-defined quantity 
for all values of z; it is in particular independent of the width 6 for small 
enough 6. Moreover, it is a very regular function of z, which very clearly 
behaves as 

r(z) ~c(p) (3.13) 
z 

as z goes to zero, and the coefficient C(p) is itself a very smooth function of 
p, which we have plotted on Fig. 4. It is obvious that, if we had chosen 
another large number instead of 10 l~ to decide when x,, escapes to infinity, 
this would have changed N(z) and T(z) by a finite amount, and hence left 
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O ,  , , , , i , i , I , i , , , , I 

o. o.s q. io 
Fig. 4. Plot of the amplitude C(p) of the small z behavior of the mean escape time T(z) [see 

Eq. (3.13)]. 

unchanged C(p), which has a physical meaning, as will be discussed at the 
end of next section. 

We have also computed the total bandwidth BE of the spectrum 
corresponding to the rational approximants tc. In the models with a dis- 
continuous quasiperiodic potential, the total bandwidth decreases as 
BL~FL ~, i.e., B L ~ a  c~ (12 16) where & is some exponent related to the 
potential strength. In the present model, this exponential decrease of the 
total bandwidth as a function of the order L of the approximant  is absent, 
because of the small-z region, where the widths of the first few bands scale 
a s  a - 2 L  [since A ( 0 ) =  a~2], while the widths of the first few gaps scale as 
a 4L. This phenomenon occurs for values of z such that L< T(z). The con- 
tribution of this region to BL therefore scales as L 1. Since gaps and bands 
have comparable widths outside this region, we expect that the total 
bandwidth also behaves as 

BL~K(p ) L ' (3.14) 

Figure 5 shows a log-log plot of the reduced bandwidth Bc/zm~ x against L 
for different values of p. The straight dashed line has slope - 1 .  The 
numerical data are compatible with the conjecture (3.14). In any case, B c 
clearly goes to zero as L goes to infinity. We would like to deduce from this 
fact a more rigorous argument in favor of the absence of an absolutely con- 
tinuous component  in the spectrum in the quasiperiodic case. To do so, we 
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0. 

j 
0. Ln L .5 

Fig. 5. Log-log plot of the reduced bandwidth BL/zma ~ against the order L of the rational 
approximant to the golden mean. The numbers indicate the values of the parameter p. The 
dashed line has slope -1 .  

have to consider a slightly more general model, and allow for a phase in 
the hull function describing the abscissas u,. This amounts to translating 
the strip to an arbitrary position in the plane N2, instead of demanding 
that the line D passes through the origin. Consider the sequence of points 
given by 

u,,=n[+ g(n+~) (3.15) 

where [ a n d  g are as in Section 2, and ~ is an arbitrary phase. Assume that 
t = tan 0 = p/q is rational: the sequence of bond lengths In = u,, + ~ - u ~  is 
then periodic, with period p + q. A remarkable property of this sequence is 
that it is independent of the phase ~, up to a translation on the label n. It is 
indeed very easy to realize that this sequence remains unchanged when 
describes the interval 0 ~< ~ < 1 / ( p +  q), and it can be shown that there 
always exists some n o such that the translation n ~ n -  n o is equivalent to 
the change of ~ into c ~ - [ ( p + q ) c ~ ] / ( p + q ) = ~ '  which indeed satisfies 
0 <<. ~'< 1/(p + q). The spectrum of the Laplacian in the rational cases is 
therefore independent of the phase e, i.e., invariant under translation of the 
strip in the plane. This is sufficient to conclude that the Lebesgue measure 
of the spectrum corresponding to t = a  1 is equal to l i m L ~  BL, i.e., 
vanishes. 
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Plot of the moment/xr defined in Eq. (4.2) for all eigenstates of a system of size N 
with p =0.5. (a) N =  I00, (b) N =  200, (c) N =  400, (d) N =  800. 
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Fig. 6 (continued) 
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4. PROPERTIES OF THE EIGENSTATES 

We now turn to the more difficult problem of characterizing the 
eigenstates of our Laplace operator. We already know that our model has 
no absolutely continuous spectrum, and hence no conventional extended 
(Bloch) states. We claim that it also has no localized (normalizable) 
eigenstates: although we have no proof of this statement in the case of the 
golden mean, and even no clear cut numerical evidence, it has been proven 
by Delyon and Petritis (18) that there exists no normalizable eigenstate for 
Schr6dinger equations with a discontinuous almost periodic potential if the 
irrational slope t contains in its continued fraction expansion an infinity of 
integers r L obeying rr /> 5. Although the golden mean does not belong to 
that class, almost all irrationals having typical diophantine properties do 
belong to it. We find it therefore reasonable to conjecture that our Laplace 
operator has only singular continuous spectrum and only "critical" 
eigenstates for all typical irrational values of t. This conjecture was in fact 
already formulated by Kohmoto (14) for the Schr6dinger equation in a dis- 
continuous quasiperiodic potential. 

In order to characterize these "critical" states more precisely, we have 
computed numerically all the eigenstates of our Laplacian on a sample of 

8 

@. I I [ 1 .  
A B C D E F  

0.5 H 

Fig. 7. P lo t  of the m o m e n t  #2, related to the IPR,  defined in Eq. (4.1), for a sys tem size 
N = 400 and p = 0.5. 
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large but finite size (number of sites) N, with Dirichlet boundary con- 
ditions ((P0 = (0N+I=0) -There  are N such states, which are conveniently* 
labeled by k, number of times qo changes its sign (1 ~< k ~< N). For large N, 
the kth state has an energy z such that H(z)~k/N. 

Let us define for each eigenstate (o the following reduced moments: 

//, = ~0~' (4.1) 

The first moment /~1 is just the usual squared L 2 norm: all the states are 
assumed to be normalized such that/~i = 1 in the following. The moment/~2 
is related to the inverse participation ratio (IPR), commonly used in 
numerical work on localization, through: #5 = N. IPR. As l goes to infinity, 
the//~ have a well-defined limit: 

~ =  Sup ~ (4.2) 
l ~ n ~ N  

which is just the squared L ~~ norm of the state. A simple way of looking at 
the "shape" of the eigenstate (p is to examine the behavior of the moments 
#~(N) for large N. It is clear that //t(N) admit finite limits as N - ~  oo for 

@ 

O, 

@. 
(a) 

Fig. 8. Phase portraits in the ((0, Q) plane of some typical eigenstates of a system with 
N =  1000 sites and p = 0.5. The IDS of the states read (a) 61/1000, (b) 262/1000, (c) 528/100, 
(d) 620/1000, (e) 933/1000. The units on the axes are such that Sup kol =Sup  IQI = 1. 
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states which "will be" conventionally extended on the infinite chain, while 
#t(N ) ~ N 1 1/l for localized (normalizable) states. 

Figure 6 shows plots of the moment #o~ for all eigenstates of our 
Laplacian for t=a  -~, p=0 .5 ,  and (a) N =  100, (b) N=200 ,  (c) N =4 0 0 ,  
(d) N = 800. The abscissas are the values of the IDS (H = kiN for the kth 
state). For the first few levels (H-- .0  or z ~ 0 )  #~ goes to the value 2, 
which is precisely the value of #~o for the eigenstates ~p~ = sin(nkrc/N) on a 
regular lattice. We shall return to that point later on. 

These plots exhibit peaked structure down to the smallest possible 
scale 6H = l/N: neighboring states have very contrasted "shapes," even for 
large system sizes. The plots corresponding to the largest two sizes, in 
Figs. 6c and 6d, show very interesting self-similarity properties, in close 
relationship with those of the IDS we have discussed in Section 3. In par- 
ticular,,the main sequence of gaps, labeled A, B, C .... in the last section, are 
clearly visible as deep local minima of #oo(H). The intervals between these 
gaps show a three-fold structure (see between B-C, C-D, D-E, etc. as well 
as between B and the upper bound, between D and the upper bound, etc.). 
The IDS (see Fig. 3) shows a fully similar three-fold structure at the very 
same places. Figure 7 shows a plot of the moment #2 for the same values of 
t and p, and a sample length N =  400. The H--* 0 limit of #2 is again in 
agreement with the value (3/2) 1/2 corresponding to plane waves on a 
regular lattice. Figures 6c and 7 show that the quantities #oo and #2 exhibit 
identical self-similarity properties. 

We can deduce from these plots the following rough empirical rule: the 
farther a state is from large gaps in the spectrum, the larger its moments #/ 
are (at fixed size N), i.e., the more it looks like a localized state. We have 
unfortunately not succeeded in putting this experimental evidence in a 
more quantitative way. 

We discuss now a totally different way of looking at the eigenstates of 
our Laplace operator. Equation (3.1) suggests that the quantities q)~ and 
Qn are very analogous to coordinate x and momentum p of a classical har- 
monic oscillator, obeying 2 = p and ~6 = -co2x. We therefore propose to 
look at the eigenstates in their phase space (~0, Q). If we solve 
equation (2.14) on a system with N sites, then each eigenstate is represen- 
ted by a set of N discrete points in that (q), Q) plane. On a regular lattice, 
the plane wave ~o, = sin(nk~/N) gives rise to points which become dense on 
an ellipse as N gets large, while a localized state gives a small dark spot at 
the origin, plus a few points away, corresponding to the few sites where the 
wave function is appreciably different from zero. Figure 8 shows some 
typical "phase portraits" we have obtained for N =  1000 and p = 0.5. The 
states are again identified by their IDS: (a) 61/1000, (b) 262/1000, (c) 
528/1000, (d) 620/1000, (e) 933/1000. The units on the axes are such that 
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Sup IcPl = Sup IQh = 1. As the IDS increases from zero to unity, the image 
turns smoothly from a loose ellipse (a) to a star (e) radiating from the 
origin with an intricate angular structure. The crossover between the two 
regimes occurs at the value of z for which the system size N is of the order 
of magnitude of the following length: 

~(Z) = GT(z) ~e[C(p)lna]/z (4.3) 

which is the length scale associated with the mean escape time discussed in 
Section 3. For  N<~ #., the wave functions do not feel the lack of periodicity 
of the quasicrystal, and roughly behave as Bloch states (note nevertheless 
the dispersion over a finite width of the points around the average ellipse in 
Fig. 8a). For  N>>~, the states are in the critical regime. There is in par- 
ticular a large probability for qo, and Q, to be simultaneously small, but 
the regions where q9 is large are not spatially localized. The characteristic 
length scale ~(z) is not a localization length (since our eigenstates are not 
localized), but rather a "memory" length, beyond which the wave function 
loses memory of its initial phase. It is quite remarkable that ~ diverges 
exponentially as z--, 0, while the localization length of random systems of 
the same type only diverges as ~1oo~ 1/z. 

5. C O N C L U S I O N S  

The present work shows that phonon propagation in quasicrystals 
already has quite interesting features in the very particular case of one 
dimension. 

The generic properties of typical irrationals have been studied in the 
example of the golden mean. As far as the spectrum is concerned, its scaling 
properties are explained by the trace mapping (3.7), which has already 
been used in the context of quasiperiodic potentials. This self-similarity 
implies that the IDS exhibits singular power-law behavior (3.10) at a dense 
set of points; this property is reminiscent of a recent work (Iv) on the spec- 
trum of a similar Laplace operator on a random chain, where the masses 
(analogous to our couplings 2,,) can only assume two values. 

The difficult question of characterizing the states has been partly 
answered. We have now strong evidence that the eigenstates are neither 
extended nor localized in the usual sense. Let us emphasize that the fact 
that all states are critical for arbitrary values of p and all typical irrational 
values of t, although already conjectured by Kohmoto et al., is still a non- 
intuitive and surprising result. Besides the interesting self-similar structures 
showing up in the plots of the moments #z, and in the phase portraits of 

822/42/3-4-5 
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the eigenstates, the most remarkable quantitative feature seems to be the 
exponential divergence of the "memory length" ~(z) at small energy. 

This type of essential singularity is also present in the localization 
length in two-dimensional random potential models, and more generally in 
every simple statistical mechanical model at its marginal (lower critical) 
dimensionality. We are therefore tempted to expect that the marginal 
dimension of the Laplacian on quasicrystals is one, and hence that 
absolutely continuous spectrum and extended quasi-Bloch-type states will 
occur for low enough energy in two and higher dimensions. We hope to 
return to that subject in a future publication. 
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